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The Standard Axioms

A complete ordered field is a 6-tuple (F ,+, ·, 0, 1, <) where F is
a set, + and · operations on F , 0 and 1 elements of F , and < a
binary relation on F satisfying the following axioms:
(1) 1 6= 0
(2) (Associative Law for Addition) a + (b + c) = (a + b) + c for all
a, b, c ∈ F
(3) (Commutative Law for Addition) a + b = b + a for all a, b ∈ F
(4) (Additive Identity) a + 0 = a for all a ∈ F
(5) (Additive Inverses) For each a ∈ F there is an element −a ∈ F
such that a +−a = 0
(6) (Associative Law for Multiplication) a · (b · c) = (a · b) · c for
all a, b, c ∈ F
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The Standard Axioms

(7) (Commutative Law for Multiplication) a · b = b · a for all
a, b ∈ F

(8) (Multiplicative Identity) a · 1 = a for all a ∈ F
(9) (Multiplicative Inverses) For each a ∈ F − {0} there is an
element b ∈ F such that a · b = 1
(10) (Distributive Law) a · (b + c) = a · b + a · c for all a, b, c ∈ F
(11) (Transitivity of <) For any a, b, c ∈ F : a < b and b < c
imply that a < c .
(12) (Trichotomy) For any a, b ∈ F exactly one of the following
holds: a = b, a < b, b < a
(13) x < y implies x + z < y + z for every x , y , z ∈ F
(14) x < y , z > 0 imply that xz < yz for every x , y , z ∈ F
(15) (Completeness) Every nonempty subset A of F that has an
upper bound in F has a least upper bound in F
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Setting the Stage

Of course, the set R of real numbers along with the usual addition,
multiplication, and order relation < forms a complete ordered field.

In fact, R is the unique complete ordered field up to isomorphism
(in other words, the standard axioms for the real numbers are
categorical).
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Setting the Stage

Sketch of Proof: Suppose that F is a complete ordered field.

The
order axioms imply that 1 > 0, and from this it follows easily that
F has characteristic 0. Thus F contains an (algebraic and order)
isomorphic copy of the rationals, say Q∗. Let f : Q∗ → Q be an
isomorphism. The completeness axiom implies that Q∗ is dense in
F . We now define an isomorphism ϕ : F → R as follows: Let
x∗ ∈ F be arbitrary. Since Q∗ is dense in F , there exists a sequence
(q∗

i ) of ‘rationals’ converging to x . One shows that (f (q∗
i )) is a

Cauchy sequence in R, hence converges to some (unique) real
number x . We then define ϕ(x∗) = x . It can be shown that ϕ is a
well-defined (order and algebraic) isomorphism between F and R.
�
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Setting the Stage

We just showed that the complete ordered field axioms are
categorical.

Another property of axiom systems, considered to be particularly
elegant ever since the birth of formal logic, is independence.

A proposition P is independent from a set Σ of sentences if P can
be neither proved nor refuted from the sentences in Σ.

Example

The property of commutativity of a group operation ∗ is
independent from the usual axioms for a group since there exist
both Abelian and non-Abelian groups (for example, (Z,+) and
(S3, ◦)).
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Setting the Stage

A less trivial (and quite famous) example of independence is the
following:

Example

The parallel postulate is independent of the other axioms for
Euclidean geometry. In particular, it holds in the real Cartesian
plane and fails in the Beltrami-Klein model for hyperbolic geometry
(discovered in the mid 1800s).
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Cantor himself believed the statement to be true and spent many
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Kurt Gödel showed in 1940 that CH cannot be disproved from the
usual axioms of set theory (ZFC) by constructing a model of ZFC
where the continuum hypothesis is true (the so-called
“constructible universe”).

In 1963, Paul Cohen showed that CH cannot be proved either by
producing a model of ZFC where CH fails (using the now famous
technique of forcing).

In fact, Cohen won a Fields Medal for this work (the only Fields
Medal awarded to a logician to date).
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In an independent axiom system, every axiom is independent
from the remaining ones.

Many algebraic and geometric systems have been given
independent axiomatizations over the years.

Example (1902)

Hilbert’s axioms for Euclidean geometry form an independent
axiom system (Hilbert proved this in Chapter 2 of his book,
Foundations of Geometry).
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Example (1968)

R.M. Dicker gave a set of independent axioms for a field.

Example (1976)

Finally, F. Rádo found an independent set of axioms for a vector
space.

In this talk, we describe a categorical, independent axiom system
for the ordered field of real numbers.
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Example

Let R be a ring with identity, but let’s dispense with the
assumption that the additive group of R is abelian. This property
may be proved from the remaining axioms.
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Proof.
Let a, b ∈ R be arbitrary, and consider the product (a + b)(1 + 1).

Expanding on the right (using the distributive property), we get

(a + b)(1 + 1) = (a + b)1 + (a + b)1 = a + b + a + b.

Expanding on the left, we obtain

(a + b)(1 + 1) = a(1 + 1) + b(1 + 1) = a + a + b + b.

Thus a + b + a + b = a + a + b + b. Canceling the first and last
terms yields b + a = a + b.
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Discarding Redundancies

-We have shown that commutativity of + may be proved from the
remaining axioms for a complete ordered field, and is hence
redundant.

-In fact, the redundancy is not eliminated by simply removing this
axiom.

- Moving toward a minimal set of axioms, consider the following
system:
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Let us define a complete ordered algebra to be a 5-tuple
(F ,+, ·, 0, <) consisting of a set F , operations + and · on F , an
element 0 ∈ F , and a relation < on F which satisfies the following
axioms:

(S1) There exists some x 6= 0 in F
(A1) + is associative
(A2) a + 0 = a for all a ∈ F
(A3) For all a ∈ F there exists b ∈ F with a + b = 0
(D) a(b + c) = ab + ac and (b + c)a = ba + ca for all a, b, c ∈ F
(O1) < is a transitive relation on F
(O2) < satisfies trichotomy on F
(O3) If a < b, then a + c < b + c and c + a < c + b for all
a, b, c ∈ F
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(O4) If a < b and c > 0, then ac < bc and ca < cb for all
a, b, c,∈ F

(O5) For all x > 0, there exists y with 0 < y < x
(C) < is complete

(i) Note that commutativity of addition is not assumed

(ii) Nor is associativity of multiplication

(iii) Nor is commutativity of multiplication

(iv) Nor is the existence of 1

(v) Nor is the existence of multiplicative inverses

Surprisingly, these properties can actually be deduced as theorems,
and need not be assumed as axioms.
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Theorem
The ordered field of real numbers is the unique model (up to
isomorphism) of the axioms for a complete ordered algebra.

Sketch of Proof: Assume that (A,+,�, 0, <) is a complete
ordered algebra.

STEP 1: Axioms (A2) and (A3) state that 0 is a right additive
identity and that every element of A has a right additive inverse. It
is well-known that this implies that (A,+, 0) is a group.
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STEP 2: There exists an embedding
f : (A,+, 0, <)→ (R,+, 0, <).

The image f [A] of A in R is
complete and has no least positive element (axioms (O5) and (C)).
It follows that f is onto, and hence (A,+, 0, <) ∼= (R,+, 0, <).

STEP 3: Define an operation ◦ on R by
x ◦ y := f (f −1(x)� f −1(y)). One then shows that
(A,+,�, 0, <) ∼= (R,+, ◦, 0, <) ∼= (R,+, ·, 0, <). �
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(A,+,�, 0, <) ∼= (R,+, ◦, 0, <) ∼= (R,+, ·, 0, <). �



Independence

We have shown that one can “throw away” many of the axioms for
the reals and yet still retain categoricity.

We now show that our work in the previous section (relative to our
new axioms) is complete; that is, we cannot throw away any more
axioms from our system.

In particular, for each axiom ϕ for a complete ordered algebra, we
give a model where ϕ is false but all other axioms are true.
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Lemma
(S1)(∃x 6= 0) is independent.
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Lemma
(A1)(associativity of addition) is independent.

Model : Let (F ,+, ·, 0, <) := (R, ∗, ·, 0, <), where ∗ is defined by
a ∗ b = 2(a + b) if a and b are either both positive or both
negative, and a ∗ b = a + b otherwise. Note that (A1) fails here as
follows: 1 ∗ (2 ∗ 3) = 1 ∗ 10 = 22, but (1 ∗ 2) ∗ 3 = 6 ∗ 3 = 18. �
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Model : Let (F ,+, ·, 0, <) := (R,+,+, 0, <). �



Independence

Lemma
(A2)(0 is a right additive identity) is independent.

Model : Let (F ,+, ·, 0, <) := (R,+, ·, 1, <). �

Lemma
(A3)(every element has a right additive inverse) is independent.

Model : Let (F ,+, ·, 0, <) := ({x ∈ R : x ≥ 0},+, ·, 0, <). �

Lemma
(D)(the distributive property) is independent.

Model : Let (F ,+, ·, 0, <) := (R,+,+, 0, <). �



Independence

Lemma
(A2)(0 is a right additive identity) is independent.

Model : Let (F ,+, ·, 0, <) := (R,+, ·, 1, <). �

Lemma
(A3)(every element has a right additive inverse) is independent.

Model : Let (F ,+, ·, 0, <) := ({x ∈ R : x ≥ 0},+, ·, 0, <). �

Lemma
(D)(the distributive property) is independent.

Model : Let (F ,+, ·, 0, <) := (R,+,+, 0, <). �



Independence

Lemma
(A2)(0 is a right additive identity) is independent.

Model : Let (F ,+, ·, 0, <) := (R,+, ·, 1, <). �

Lemma
(A3)(every element has a right additive inverse) is independent.

Model : Let (F ,+, ·, 0, <) := ({x ∈ R : x ≥ 0},+, ·, 0, <). �

Lemma
(D)(the distributive property) is independent.

Model : Let (F ,+, ·, 0, <) := (R,+,+, 0, <). �



Independence

Lemma
(A2)(0 is a right additive identity) is independent.

Model : Let (F ,+, ·, 0, <) := (R,+, ·, 1, <). �

Lemma
(A3)(every element has a right additive inverse) is independent.

Model : Let (F ,+, ·, 0, <) := ({x ∈ R : x ≥ 0},+, ·, 0, <). �

Lemma
(D)(the distributive property) is independent.

Model : Let (F ,+, ·, 0, <) := (R,+,+, 0, <). �



Independence

Lemma
(A2)(0 is a right additive identity) is independent.

Model : Let (F ,+, ·, 0, <) := (R,+, ·, 1, <). �

Lemma
(A3)(every element has a right additive inverse) is independent.

Model : Let (F ,+, ·, 0, <) := ({x ∈ R : x ≥ 0},+, ·, 0, <). �

Lemma
(D)(the distributive property) is independent.

Model : Let (F ,+, ·, 0, <) := (R,+,+, 0, <). �



Independence

Lemma
(A2)(0 is a right additive identity) is independent.

Model : Let (F ,+, ·, 0, <) := (R,+, ·, 1, <). �

Lemma
(A3)(every element has a right additive inverse) is independent.

Model : Let (F ,+, ·, 0, <) := ({x ∈ R : x ≥ 0},+, ·, 0, <). �

Lemma
(D)(the distributive property) is independent.

Model : Let (F ,+, ·, 0, <) := (R,+,+, 0, <). �



Independence

Lemma
(O1)(transitivity of <) is independent.

Model : Let F7 denote the field with seven elements and let
P := {1, 2, 4}. Then note that P enjoys the following properties:
(1) P is closed under multiplication
(2) P, {0},−P forms a partition of F7.
Now define a relation < on F7 as follows:

x < y ⇔ y − x ∈ P

and let (F ,+, ·, 0, <) := (F7,+, ·, 0, <). Note that 1 < 2 and
2 < 4, yet 1 � 4. �
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Lemma
(O3)(invariance of < under addition) is independent.

Model : Let (F ,+, ·, 0, <) := (R,+, ·, 0,P) where P is defined as
follows:
For real numbers x and y , define xPy iff either:
(1) x ≤ 0 and x < y or
(2) x > 0, y > 0, and y < x
(Here, < is the usual ordering on R). Note that under this order,
0P1. However, adding 1 to both sides yields 1P2, and this is false.
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Lemma
(O4)(invariance of < under multiplication by positive elements) is
independent.

Model : Define an ordering P on the reals by xPy iff y < x .

Now
note that under this ordering, 0P(−1). If (O4) held, then we could
multiply through by −1 to obtain 0P1. But then by definition, this
would mean that 1 < 0, which is absurd. Thus (O4) fails in this
model. �
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(O5)(no least positive element) is independent.

Model : (F ,+, ·, 0, <) := (Z,+, ·, 0, <). �

Lemma
(C)(completeness) is independent.

Model : Let (F ,+, ·, 0, <) := (Q,+, ·, 0, <). �

Hence we have established the following theorem:

Theorem
The axioms for a complete ordered algebra are categorical and
independent, and the reals yield the unique model of the axioms up
to isomorphism.
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