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Definition

A group G is topological if there is a topology on G (as a set) in which
the group operations, multiplication and taking inverses, are continuous.

Examples

1 Any group becomes topological under the discrete topology, in
which every subset is open.

2 (R,+) is a completely metrizable topological group under its usual
topology (i.e., the topology is defined by a metric, which happens to
be complete).

3 The group of all permutations Sym(Ω) of an infinite set Ω is a
topological group under the function topology, which has a subbasis
of open sets of the form {f ∈ Sym(Ω) : f (α) = β} (α, β ∈ Ω).

4 If {Gi}i∈I is any collection of topological groups, then
∏

i∈I Gi is a
topological group under the product topology, which has a subbasis
of open sets of the form

∏
i∈I Ui , where for some j ∈ I , Uj ⊆ Gj is

an open set, and Ui = Gi for i 6= j .
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Definition

A topological group is Polish if its topology is completely metrizable and
it contains a countable dense subset.

Examples

1 Any countable discrete group is Polish.

2 (R,+) is Polish, since Q ⊆ R is dense.

3 Sym(Z+) is Polish. For all f , g ∈ Sym(Z+), define

d(f , g) =

{
0 if f = g
2−n if f 6= g

where n ∈ Z+ is the least number such that either f (n) 6= g(n) or
f −1(n) 6= g−1(n). Then d is a complete metric which induces the
function topology on Sym(Z+), and the (countable) subset of all
permutations that move only finitely many points is dense.

4 A countable direct product of Polish groups is Polish.
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Definition

Let T be subset of a topological space.

1 T is called nowhere dense if its closure contains no open subsets.

2 T is called comeagre if it is the complement of a countable union of
nowhere dense sets.

Theorem (Dixon, 1990)

Let S = Sym(Z+). Then the set

{(g1, . . . , gn) ∈ Sn : {g1, . . . , gn} freely generates a free subgroup of S}

is comeagre in Sn for each integer n ≥ 2.



Theorem

The following groups S satisfy the conclusion of Dixon’s theorem.

1 (Glass/McCleary/Rubin, 1993) Aut(Ω,≤), for any countable
highly homogeneous poset (Ω,≤).

2 (Gartside/Knight, 2003) Any Polish oligomorphic group.

3 (Bryant/Roman′kov, 1998) Aut(G ), for any relatively free
Ω-algebra G of infinite rank, where Ω is an operator domain.

4 (Bhattarcharjee, 1995) An inverse limit of wreath products of
nontrivial groups.

5 (Gartside/Knight, 2003) The absolute Galois group of the rational
numbers.

6 (Epstein/Gartside/Knight, 2003) Any finite-dimensional connected
non-solvable Lie group.



Definition

Let G be a Polish group. Then G is almost free if

{(g1, . . . , gn) ∈ Gn : {g1, . . . , gn} freely generates a free subgroup of G}

is comeagre in Gn for each n ≥ 2, and G is almost countably free if

{(g1, g2, . . . ) ∈ G N : {g1, g2, . . . } freely generates a free subgroup of G}

is comeagre in G N.

Theorem (Gartside/Knight, 2003)

Let G be a non-discrete Polish group. Then the following are equivalent.

1 G is almost free.

2 G is almost countably free.

3 G contains a dense free subgroup of rank ≥ 2.



Definition

Let G be a Polish group. Then G is almost free if

{(g1, . . . , gn) ∈ Gn : {g1, . . . , gn} freely generates a free subgroup of G}

is comeagre in Gn for each n ≥ 2, and G is almost countably free if

{(g1, g2, . . . ) ∈ G N : {g1, g2, . . . } freely generates a free subgroup of G}

is comeagre in G N.

Theorem (Gartside/Knight, 2003)

Let G be a non-discrete Polish group. Then the following are equivalent.

1 G is almost free.

2 G is almost countably free.

3 G contains a dense free subgroup of rank ≥ 2.



Theorem (Baire Category)

In a complete metric space, the intersection of a countable collection of
open dense sets is dense; equivalently, a comeagre set must be dense.

Examples

1 Countable non-discrete groups (in particular, countable free groups)
are not completely metrizable, and hence not Polish. (If such a
group is completely metrizable and has no isolated points, then it
can be written as a countable union of nowhere dense sets, namely
the singleton sets, which contradicts the Baire Category Theorem.
But, if some element is isolated, then the group must be discrete.)

2 If |Ω| > ℵ0, then Sym(Ω) is not metrizable, since it is not
first-countable. (A topological space is first-countable if each point
has a countable base for its system of neighborhoods. Every metric
space is first-countable, since the open balls centered at a point p,
of radii 1/n (n ∈ Z+) form a countable base for p.)

3 For any group G and any non-Polish group H, G × H is not Polish.
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Definition (Gartside/Knight)

Let G be a Polish group. Then G is almost free if

{(g1, . . . , gn) ∈ Gn : {g1, . . . , gn} freely generates a free subgroup of G}

is comeagre in Gn for each n ≥ 2, and G is almost countably free if

{(g1, g2, . . . ) ∈ G N : {g1, g2, . . . } freely generates a free subgroup of G}

is comeagre in G N.

Remark

By the Baire Category Theorem, in a complete metric space a comeagre
set is dense. But, comeagre is not a particularly useful notion in an
arbitrary topological space.



Definition

An infinite topological group G is almost κ-free if

Gκ = {(gi )i∈κ ∈ Gκ : {gi}i∈κ freely generates a free subgroup of G}

is dense in Gκ, where κ > 0 a cardinal. Also, G is almost free if it is
almost n-free for each n ∈ Z+, and G is almost countably free if it is
almost ℵ0-free.

Lemma

Let G be a completely metrizable topological group and 1 ≤ κ ≤ ℵ0.
Then Gκ is dense in Gκ if and only if Gκ is comeagre in Gκ.

Proof.

The “if” direction follows from the Baire Category Theorem. For the
converse, express Gκ \ Gκ as the (countable) union of the closed sets
{(gi )i∈κ ∈ Gκ : w(gi1 , . . . , gin) = 1}, where i1, . . . , in ∈ κ and w is a free
word. If Gκ is dense in Gκ, then these sets are nowhere dense.
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Theorem (Gartside/Knight)

Let G be a non-discrete Polish group. Then the following are equivalent.

1 G is almost free.

2 G is almost countably free.

3 G contains a dense free subgroup of rank ≥ 2.

Proposition

Let G and H be topological groups, and let κ > λ > 0 be cardinals.

1 If G is almost κ-free, then it is almost λ-free.

2 G is almost free if and only if G is almost countably free.

3 G ×H is almost κ-free if and only if one of G and H is almost κ-free.

Theorem

Let G be a non-discrete Hausdorff topological group and κ > 0 a
cardinal. If G contains a dense free subgroup of rank κ, then G is almost
κ-free. Moreover, if 2 ≤ κ ≤ ℵ0, then G is almost countably free.
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Theorem

Let G be a non-discrete Hausdorff topological group and κ > 0 a
cardinal. If G contains a dense free subgroup of rank κ, then G is almost
κ-free. Moreover, if 2 ≤ κ ≤ ℵ0, then G is almost countably free.

Remarks

1 The statement fails for discrete groups, because such groups are not
almost κ-free for any κ > 0.

2 The statement fails for non-Hausdorff groups. (Let F be a discrete
free group of rank κ > 0, and let H 6= {1} be an indiscrete group
which contains no nontrivial free subgroups. Then F × H is a
non-discrete non-Hausdorff group, having F × {1} as a dense free
subgroup, which is not almost κ-free.)

3 Not all almost κ-free groups have dense free subgroups. (For κ > 0,
let G be an almost κ-free group, and let A be a discrete abelian
group of cardinality > |G |. Then, G × A is almost κ-free but has no
dense free subgroups.)
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Let G be a non-discrete Hausdorff topological group and κ > 0 a
cardinal. If G contains a dense free subgroup of rank κ, then G is almost
κ-free. Moreover, if 2 ≤ κ ≤ ℵ0, then G is almost countably free.

Proposition

Given a free topological group F of rank κ > 0, the following are
equivalent.

1 The topology on F is non-discrete.

2 F is almost κ-free.

Moreover, in the above situation, if 2 ≤ κ ≤ ℵ0, then F is almost
countably free.

Lemma

Let κ > 0 be a cardinal, and let G be a topological group containing a
dense subgroup H which is almost κ-free with respect to the induced
topology. Then G is itself almost κ-free.
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Theorem (Breuillard/Gelander)

Every dense subgroup of a connected semi-simple real Lie group G
contains a free subgroup of rank 2 that is dense (in G ).

Corollary

Every dense subgroup of a connected semi-simple real Lie group is almost
countably free.

Theorem (Melles/Shelah)

Let T be a stable theory and M a saturated model of T , such that
|M| > |T |. Then Aut(M) has a dense free subgroup of rank 2|M|.

Corollary

Let T be a stable theory and M a saturated model of T , such that
|M| > |T |. Then Aut(M) is almost 2|M|-free.

In particular, Sym(Ω) is almost 2|Ω|-free for any infinite set Ω.
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Question

Given an integer n > 1, is there a topological group that is almost n-free
but not almost (n + 1)-free?

Question

Is there a completely metrizable group that is almost free but not almost
ℵ1-free?

Thank you!
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