Groups where free subgroups are abundant

Zak Mesyan

University of Colorado Colorado Springs

November 4, 2011

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

A group G is *topological* if there is a topology on G (as a set) in which the group operations, multiplication and taking inverses, are continuous.

A group G is *topological* if there is a topology on G (as a set) in which the group operations, multiplication and taking inverses, are continuous.

Examples

• Any group becomes topological under the *discrete topology*, in which every subset is open.

A group G is *topological* if there is a topology on G (as a set) in which the group operations, multiplication and taking inverses, are continuous.

- Any group becomes topological under the *discrete topology*, in which every subset is open.
- ② (ℝ, +) is a completely metrizable topological group under its usual topology (i.e., the topology is defined by a metric, which happens to be complete).

A group G is *topological* if there is a topology on G (as a set) in which the group operations, multiplication and taking inverses, are continuous.

- Any group becomes topological under the *discrete topology*, in which every subset is open.
- (R,+) is a completely metrizable topological group under its usual topology (i.e., the topology is defined by a metric, which happens to be complete).
- The group of all permutations Sym(Ω) of an infinite set Ω is a topological group under the *function topology*, which has a subbasis of open sets of the form {f ∈ Sym(Ω) : f(α) = β} (α, β ∈ Ω).

A group G is *topological* if there is a topology on G (as a set) in which the group operations, multiplication and taking inverses, are continuous.

- Any group becomes topological under the *discrete topology*, in which every subset is open.
- (ℝ, +) is a *completely metrizable* topological group under its usual topology (i.e., the topology is defined by a metric, which happens to be complete).
- The group of all permutations Sym(Ω) of an infinite set Ω is a topological group under the *function topology*, which has a subbasis of open sets of the form {f ∈ Sym(Ω) : f(α) = β} (α, β ∈ Ω).
- If $\{G_i\}_{i \in I}$ is any collection of topological groups, then $\prod_{i \in I} G_i$ is a topological group under the *product topology*, which has a subbasis of open sets of the form $\prod_{i \in I} U_i$, where for some $j \in I$, $U_j \subseteq G_j$ is an open set, and $U_i = G_i$ for $i \neq j$.

A topological group is *Polish* if its topology is completely metrizable and it contains a countable dense subset.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

A topological group is *Polish* if its topology is completely metrizable and it contains a countable dense subset.

Examples

Any countable discrete group is Polish.

A topological group is *Polish* if its topology is completely metrizable and it contains a countable dense subset.

- Any countable discrete group is Polish.
- $\textcircled{0}(\mathbb{R},+) \text{ is Polish, since } \mathbb{Q} \subseteq \mathbb{R} \text{ is dense.}$

A topological group is *Polish* if its topology is completely metrizable and it contains a countable dense subset.

Examples

- Any countable discrete group is Polish.
- **2** $(\mathbb{R}, +)$ is Polish, since $\mathbb{Q} \subseteq \mathbb{R}$ is dense.
- Sym (\mathbb{Z}_+) is Polish. For all $f, g \in Sym(\mathbb{Z}_+)$, define

$$d(f,g) = \begin{cases} 0 & \text{if } f = g\\ 2^{-n} & \text{if } f \neq g \end{cases}$$

where $n \in \mathbb{Z}_+$ is the least number such that either $f(n) \neq g(n)$ or $f^{-1}(n) \neq g^{-1}(n)$. Then *d* is a complete metric which induces the function topology on $\text{Sym}(\mathbb{Z}_+)$, and the (countable) subset of all permutations that move only finitely many points is dense.

A topological group is *Polish* if its topology is completely metrizable and it contains a countable dense subset.

Examples

- Any countable discrete group is Polish.
- **2** $(\mathbb{R}, +)$ is Polish, since $\mathbb{Q} \subseteq \mathbb{R}$ is dense.
- Sym (\mathbb{Z}_+) is Polish. For all $f, g \in Sym(\mathbb{Z}_+)$, define

$$d(f,g) = \begin{cases} 0 & \text{if } f = g\\ 2^{-n} & \text{if } f \neq g \end{cases}$$

where $n \in \mathbb{Z}_+$ is the least number such that either $f(n) \neq g(n)$ or $f^{-1}(n) \neq g^{-1}(n)$. Then *d* is a complete metric which induces the function topology on $\text{Sym}(\mathbb{Z}_+)$, and the (countable) subset of all permutations that move only finitely many points is dense.

• A countable direct product of Polish groups is Polish.

Let T be subset of a topological space.

- **1** T is called *nowhere dense* if its closure contains no open subsets.
- T is called *comeagre* if it is the complement of a countable union of nowhere dense sets.

Theorem (Dixon, 1990)

Let $S = Sym(\mathbb{Z}_+)$. Then the set

 $\{(g_1,\ldots,g_n)\in S^n:\{g_1,\ldots,g_n\}$ freely generates a free subgroup of $S\}$

is comeagre in S^n for each integer $n \ge 2$.

The following groups S satisfy the conclusion of Dixon's theorem.

- Glass/McCleary/Rubin, 1993) Aut(Ω, ≤), for any countable highly homogeneous poset (Ω, ≤).
- (Gartside/Knight, 2003) Any Polish oligomorphic group.
- (Bryant/Roman'kov, 1998) Aut(G), for any relatively free Ω-algebra G of infinite rank, where Ω is an operator domain.
- (Bhattarcharjee, 1995) An inverse limit of wreath products of nontrivial groups.
- (Gartside/Knight, 2003) The absolute Galois group of the rational numbers.
- (Epstein/Gartside/Knight, 2003) Any finite-dimensional connected non-solvable Lie group.

Let G be a Polish group. Then G is almost free if $\{(g_1, \ldots, g_n) \in G^n : \{g_1, \ldots, g_n\}$ freely generates a free subgroup of G} is comeagre in G^n for each $n \ge 2$, and G is almost countably free if $\{(g_1, g_2, \ldots) \in G^{\mathbb{N}} : \{g_1, g_2, \ldots\}$ freely generates a free subgroup of G} is comeagre in $G^{\mathbb{N}}$.

Let G be a Polish group. Then G is almost free if $\{(g_1, \ldots, g_n) \in G^n : \{g_1, \ldots, g_n\}$ freely generates a free subgroup of G} is comeagre in G^n for each $n \ge 2$, and G is almost countably free if $\{(g_1, g_2, \ldots) \in G^{\mathbb{N}} : \{g_1, g_2, \ldots\}$ freely generates a free subgroup of G} is comeagre in $G^{\mathbb{N}}$.

Theorem (Gartside/Knight, 2003)

Let G be a non-discrete Polish group. Then the following are equivalent.

- G is almost free.
- G is almost countably free.
- G contains a dense free subgroup of rank ≥ 2 .

Theorem (Baire Category)

In a complete metric space, the intersection of a countable collection of open dense sets is dense; equivalently, a comeagre set must be dense.

Examples

Countable non-discrete groups (in particular, countable free groups) are not completely metrizable, and hence not Polish. (If such a group is completely metrizable and has no isolated points, then it can be written as a countable union of nowhere dense sets, namely the singleton sets, which contradicts the Baire Category Theorem. But, if some element is isolated, then the group must be discrete.)

Theorem (Baire Category)

In a complete metric space, the intersection of a countable collection of open dense sets is dense; equivalently, a comeagre set must be dense.

- Countable non-discrete groups (in particular, countable free groups) are not completely metrizable, and hence not Polish. (If such a group is completely metrizable and has no isolated points, then it can be written as a countable union of nowhere dense sets, namely the singleton sets, which contradicts the Baire Category Theorem. But, if some element is isolated, then the group must be discrete.)
- If |Ω| > ℵ₀, then Sym(Ω) is not metrizable, since it is not first-countable. (A topological space is *first-countable* if each point has a countable base for its system of neighborhoods. Every metric space is first-countable, since the open balls centered at a point p, of radii 1/n (n ∈ Z₊) form a countable base for p.)

Theorem (Baire Category)

In a complete metric space, the intersection of a countable collection of open dense sets is dense; equivalently, a comeagre set must be dense.

- Countable non-discrete groups (in particular, countable free groups) are not completely metrizable, and hence not Polish. (If such a group is completely metrizable and has no isolated points, then it can be written as a countable union of nowhere dense sets, namely the singleton sets, which contradicts the Baire Category Theorem. But, if some element is isolated, then the group must be discrete.)
- If |Ω| > ℵ₀, then Sym(Ω) is not metrizable, since it is not first-countable. (A topological space is *first-countable* if each point has a countable base for its system of neighborhoods. Every metric space is first-countable, since the open balls centered at a point *p*, of radii 1/n (n ∈ Z₊) form a countable base for *p*.)
- Solution For any group G and any non-Polish group H, $G \times H$ is not Polish.

Definition (Gartside/Knight)

Let G be a Polish group. Then G is almost free if

 $\{(g_1, \ldots, g_n) \in G^n : \{g_1, \ldots, g_n\}$ freely generates a free subgroup of $G\}$ is comeagre in G^n for each $n \ge 2$, and G is *almost countably free* if $\{(g_1, g_2, \ldots) \in G^{\mathbb{N}} : \{g_1, g_2, \ldots\}$ freely generates a free subgroup of $G\}$ is comeagre in $G^{\mathbb{N}}$.

Remark

By the Baire Category Theorem, in a complete metric space a comeagre set is dense. But, *comeagre* is not a particularly useful notion in an arbitrary topological space.

An infinite topological group G is almost κ -free if

 $G_{\kappa} = \{(g_i)_{i \in \kappa} \in G^{\kappa} : \{g_i\}_{i \in \kappa} \text{ freely generates a free subgroup of } G\}$

is dense in G^{κ} , where $\kappa > 0$ a cardinal. Also, G is almost free if it is almost *n*-free for each $n \in \mathbb{Z}_+$, and G is almost countably free if it is almost \aleph_0 -free.

An infinite topological group G is almost κ -free if

 $G_{\kappa} = \{(g_i)_{i \in \kappa} \in G^{\kappa} : \{g_i\}_{i \in \kappa} \text{ freely generates a free subgroup of } G\}$

is dense in G^{κ} , where $\kappa > 0$ a cardinal. Also, G is almost free if it is almost *n*-free for each $n \in \mathbb{Z}_+$, and G is almost countably free if it is almost \aleph_0 -free.

Lemma

Let G be a completely metrizable topological group and $1 \le \kappa \le \aleph_0$. Then G_{κ} is dense in G^{κ} if and only if G_{κ} is comeagre in G^{κ} .

An infinite topological group G is almost κ -free if

 $G_{\kappa} = \{(g_i)_{i \in \kappa} \in G^{\kappa} : \{g_i\}_{i \in \kappa} \text{ freely generates a free subgroup of } G\}$

is dense in G^{κ} , where $\kappa > 0$ a cardinal. Also, G is almost free if it is almost *n*-free for each $n \in \mathbb{Z}_+$, and G is almost countably free if it is almost \aleph_0 -free.

Lemma

Let G be a completely metrizable topological group and $1 \le \kappa \le \aleph_0$. Then G_{κ} is dense in G^{κ} if and only if G_{κ} is comeagre in G^{κ} .

Proof.

The "if" direction follows from the Baire Category Theorem. For the converse, express $G^{\kappa} \setminus G_{\kappa}$ as the (countable) union of the closed sets $\{(g_i)_{i \in \kappa} \in G^{\kappa} : w(g_{i_1}, \ldots, g_{i_n}) = 1\}$, where $i_1, \ldots, i_n \in \kappa$ and w is a free word. If G_{κ} is dense in G^{κ} , then these sets are nowhere dense.

Theorem (Gartside/Knight)

Let G be a non-discrete Polish group. Then the following are equivalent.

- G is almost free.
- *G* is almost countably free.
- G contains a dense free subgroup of rank ≥ 2 .

Proposition

Let G and H be topological groups, and let $\kappa > \lambda > 0$ be cardinals.

- **1** If G is almost κ -free, then it is almost λ -free.
- \bigcirc G is almost free if and only if G is almost countably free.
- **③** $G \times H$ is almost κ -free if and only if one of G and H is almost κ -free.

Theorem (Gartside/Knight)

Let G be a non-discrete Polish group. Then the following are equivalent.

- G is almost free.
- G is almost countably free.
- G contains a dense free subgroup of rank ≥ 2 .

Proposition

Let G and H be topological groups, and let $\kappa > \lambda > 0$ be cardinals.

- **1** If G is almost κ -free, then it is almost λ -free.
- \bigcirc G is almost free if and only if G is almost countably free.
- **③** $G \times H$ is almost κ -free if and only if one of G and H is almost κ -free.

Theorem

Let G be a non-discrete Hausdorff topological group and $\kappa > 0$ a cardinal. If G contains a dense free subgroup of rank κ , then G is almost κ -free. Moreover, if $2 \le \kappa \le \aleph_0$, then G is almost countably free.

Let G be a non-discrete Hausdorff topological group and $\kappa > 0$ a cardinal. If G contains a dense free subgroup of rank κ , then G is almost κ -free. Moreover, if $2 \le \kappa \le \aleph_0$, then G is almost countably free.

Let G be a non-discrete Hausdorff topological group and $\kappa > 0$ a cardinal. If G contains a dense free subgroup of rank κ , then G is almost κ -free. Moreover, if $2 \le \kappa \le \aleph_0$, then G is almost countably free.

Remarks

The statement fails for discrete groups, because such groups are not almost κ-free for any κ > 0.

Let G be a non-discrete Hausdorff topological group and $\kappa > 0$ a cardinal. If G contains a dense free subgroup of rank κ , then G is almost κ -free. Moreover, if $2 \le \kappa \le \aleph_0$, then G is almost countably free.

Remarks

- The statement fails for discrete groups, because such groups are not almost κ-free for any κ > 0.
- ② The statement fails for non-Hausdorff groups. (Let F be a discrete free group of rank κ > 0, and let H ≠ {1} be an indiscrete group which contains no nontrivial free subgroups. Then F × H is a non-discrete non-Hausdorff group, having F × {1} as a dense free subgroup, which is not almost κ-free.)

Let G be a non-discrete Hausdorff topological group and $\kappa > 0$ a cardinal. If G contains a dense free subgroup of rank κ , then G is almost κ -free. Moreover, if $2 \le \kappa \le \aleph_0$, then G is almost countably free.

Remarks

- The statement fails for discrete groups, because such groups are not almost κ-free for any κ > 0.
- ② The statement fails for non-Hausdorff groups. (Let F be a discrete free group of rank κ > 0, and let H ≠ {1} be an indiscrete group which contains no nontrivial free subgroups. Then F × H is a non-discrete non-Hausdorff group, having F × {1} as a dense free subgroup, which is not almost κ-free.)
- Not all almost κ-free groups have dense free subgroups. (For κ > 0, let G be an almost κ-free group, and let A be a discrete abelian group of cardinality > |G|. Then, G × A is almost κ-free but has no dense free subgroups.)

Let G be a non-discrete Hausdorff topological group and $\kappa > 0$ a cardinal. If G contains a dense free subgroup of rank κ , then G is almost κ -free. Moreover, if $2 \le \kappa \le \aleph_0$, then G is almost countably free.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Let G be a non-discrete Hausdorff topological group and $\kappa > 0$ a cardinal. If G contains a dense free subgroup of rank κ , then G is almost κ -free. Moreover, if $2 \le \kappa \le \aleph_0$, then G is almost countably free.

Proposition

Given a free topological group F of rank $\kappa > 0$, the following are equivalent.

- The topology on *F* is non-discrete.
- **2** F is almost κ -free.

Moreover, in the above situation, if $2 \le \kappa \le \aleph_0$, then F is almost countably free.

Let G be a non-discrete Hausdorff topological group and $\kappa > 0$ a cardinal. If G contains a dense free subgroup of rank κ , then G is almost κ -free. Moreover, if $2 \le \kappa \le \aleph_0$, then G is almost countably free.

Proposition

Given a free topological group F of rank $\kappa > 0$, the following are equivalent.

- The topology on *F* is non-discrete.
- **2** F is almost κ -free.

Moreover, in the above situation, if $2 \le \kappa \le \aleph_0$, then *F* is almost countably free.

Lemma

Let $\kappa > 0$ be a cardinal, and let G be a topological group containing a dense subgroup H which is almost κ -free with respect to the induced topology. Then G is itself almost κ -free.

Every dense subgroup of a connected semi-simple real Lie group G contains a free subgroup of rank 2 that is dense (in G).

Every dense subgroup of a connected semi-simple real Lie group G contains a free subgroup of rank 2 that is dense (in G).

Corollary

Every dense subgroup of a connected semi-simple real Lie group is almost countably free.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Every dense subgroup of a connected semi-simple real Lie group G contains a free subgroup of rank 2 that is dense (in G).

Corollary

Every dense subgroup of a connected semi-simple real Lie group is almost countably free.

Theorem (Melles/Shelah)

Let T be a stable theory and M a saturated model of T, such that |M| > |T|. Then Aut(M) has a dense free subgroup of rank $2^{|M|}$.

Every dense subgroup of a connected semi-simple real Lie group G contains a free subgroup of rank 2 that is dense (in G).

Corollary

Every dense subgroup of a connected semi-simple real Lie group is almost countably free.

Theorem (Melles/Shelah)

Let T be a stable theory and M a saturated model of T, such that |M| > |T|. Then Aut(M) has a dense free subgroup of rank $2^{|M|}$.

Corollary

Let T be a stable theory and M a saturated model of T, such that |M| > |T|. Then Aut(M) is almost $2^{|M|}$ -free.

In particular, $Sym(\Omega)$ is almost $2^{|\Omega|}$ -free for any infinite set Ω .

Question

Given an integer n > 1, is there a topological group that is almost *n*-free but not almost (n + 1)-free?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Question

Given an integer n > 1, is there a topological group that is almost *n*-free but not almost (n + 1)-free?

Question

Is there a completely metrizable group that is almost free but not almost $\aleph_1\text{-}\mathsf{free}?$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Question

Given an integer n > 1, is there a topological group that is almost *n*-free but not almost (n + 1)-free?

Question

Is there a completely metrizable group that is almost free but not almost $\aleph_1\text{-}\mathsf{free}?$

Thank you!