Combinatorial Identities: Binomial Coefficients, Pascal's Triangle, and Stars & Bars

Molly Maxwell

September 9, 2011

Background

- Factorials
- Binomial Coefficients
- Pascal's Triangle
 - Several Combinatorial Identities
 - Block Walking Interpretation of the Entries
 - Properties of the Diagonals
- Compositions
 - Famous Combinatorial Identitiy

Factorials: Definition & Examples

For any positive integer *n*:

$$n! = n \cdot (n-1) \cdot (n-2) \cdots 2 \cdot 1$$

Examples:

$$\begin{array}{rcl}
1! &=& 1 \\
2! &=& 2 \cdot 1 \\
3! &=& 3 \cdot 2 \cdot 1 \\
\vdots & \vdots
\end{array}$$

By convention: 0! = 1

Binomial Coefficients: Definition & Examples

For integers *n* and *k* with $0 \le k \le n$:

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Examples:

$$\binom{4}{2} = \frac{4!}{2!2!} = \frac{24}{2 \cdot 2} = 6$$
$$\binom{3}{0} = \frac{3!}{0!3!} = \frac{6}{1 \cdot 6} = 1$$

 $\binom{n}{k}$ = the # of ways to choose a subset with k elements from a set with n elements

Equivalently:

 $\binom{n}{k}$ = the # of *k*-element subsets that can be formed from a set with *n* elements

Binomial Coefficients: An Example

$$S = \left\{ \begin{array}{c} \\ \end{array}, \begin{array}{c} \\ \end{array}, \end{array}, \begin{array}{c} \\ \end{array}, \end{array} \right\}$$

Subsets of S with 2 elements:

 $\binom{4}{2} = \frac{4!}{2!2!} = \frac{24}{2 \cdot 2} = 6 = \# \text{ of subsets of } S \text{ with 2 elements } \checkmark$

 $\binom{n}{0}$

Our First Identity

.

:

ŝ

:

•

÷

÷

$$\cdots \quad \boxed{\binom{n-1}{k-1}} \qquad \boxed{\binom{n}{k}} \qquad \cdots$$

Identity

$$\binom{n-1}{k-1} + \binom{n-1}{k} = \binom{n}{k}$$

Consider the set $S = \{1, 2, 3, 4, ..., n\}$

<u>Plan:</u> Count the # of subsets of S with k elements in two different ways.

1st way to count the # of subsets of *S* with *k* elements:

Total # of *k*-element subsets of *S* =
$$\binom{n}{k}$$

2nd way to count the # of subsets of S with k elements:

Observation: Each subset of S either contains the element n or it doesn't.

subsets of S = $\frac{\# \text{ of } K \text{-element subsets}}{\text{ of } S \text{ that contain } n} + \frac{\#}{\text{ of } S \text{ that contain } n}$	S that don't contain n
--	------------------------

To form a *k*-element subset that contains *n*:

- Put *n* into the subset. There's only 1 way to do this.
- Choose k 1 other elements from $\{1, 2, 3, ..., n 1\}$ There are $\binom{n-1}{k-1}$ ways to do this.

 \implies There are $\binom{n-1}{k-1}$ *k*-element subsets that contain *n*.

To form a *k*-element subset that *doesn't* contain *n*:

• Choose *k* elements from $\{1, 2, 3, ..., n-1\}$ There are $\binom{n-1}{k}$ ways to do this.

 \implies There are $\binom{n-1}{k}$ k-element subsets that don't contain n.

Total # of k-element subsets of S = # of k-element subsets
$$n$$
 + # of k-element subsets of S that contain n

Total # of k-element subsets of S =
$$\binom{n-1}{k-1}$$
 + $\binom{n-1}{k}$

In Summary:

1st way: Total # of k-element subsets of S = $\binom{n}{k}$

2nd way: Total # of k-element subsets of S =
$$\binom{n-1}{k-1} + \binom{n-1}{k}$$

$$\implies \qquad \boxed{\binom{n-1}{k-1} + \binom{n-1}{k}} = \binom{n}{k}$$

Our Second Identity

÷

Pascal's Triangle: The Sums of the Rows

Pascal's Triangle: The Sums of the Rows

Another Identity

$$\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n-2} + \binom{n}{n-1} + \binom{n}{n} = 2^n$$

Again, consider the set $S = \{1, 2, 3, ..., n\}$.

<u>Plan:</u> Count the total number of subsets of *S* in two different ways.

1st way of counting the subsets of S:

2nd way of counting the subsets of S:

When building a subset of S, there are two choices for each element: either it's in the subset or it's not.

 \implies There are $2 \cdot 2 \cdot 2 \cdot \cdots \cdot 2 = 2^n$ ways to build a subset.

 \implies There are 2^{*n*} subsets of *S*.

1st Way:

Total # of
subsets of
$$S = \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n-1} + \binom{n}{n}$$

2nd Way:

•

 $\frac{\text{Total \# of}}{\text{subsets of }S} = 2^n$

$$\therefore \left| \begin{array}{c} \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n-1} + \binom{n}{n} \right| = 2^{n}$$

An interpretation of the binomial coefficients

Block walking: The grid of blocks

The # of block walks from 0,0 to n,k is $\binom{n}{k}$

Combinatorial Proof:

To walk from 0,0 to n,k:

- You need to travel *n* total blocks to get to the *n*th row.
- *k* of these *n* blocks must be to the right to end up in the *k*th position in the row.

of block walks from 0,0 to n,k: (

$$\binom{n}{k}$$

Our 3rd Identity

Pascal's Triangle

ŝ

2

÷

٠

÷

:

.

÷

:

.

÷

$$\begin{array}{c}
\binom{n+r}{r} \\
\binom{n+r+1}{r}
\end{array}$$

$$\binom{n}{0} + \binom{n+1}{1} + \binom{n+2}{2} + \binom{n+3}{3} + \dots + \binom{n+r}{r} = \binom{n+r+1}{r}$$

Combinatorial Proof: Block Walks!

Key Observation:

From each of the last left turns, there's only one way to get to \bigstar .

Counting the Block Walks

1

.

of block walks to☆

- = # of block walks whose last left turn is at the 1st circle
- + # of block walks whose last left turn is at the 2nd circle
- + # of block walks whose last left turn is at the last circle

of block walks to \bigstar

- = # of block walks from 0,0 to the 1st circle
- + # of block walks from 0,0 to the 2nd circle
- + # of block walks from 0,0 to the last circle

Using the Interpretation of the Binomial Coefficients:

For some *n*:

Counting the Block Walks:

÷

of block

walks to \star

- = # of block walks from 0,0 to the 1st circle
- + # of block walks from 0,0 to the 2nd circle
- + # of block walks from 0,0 to the last circle

Other Diagonals

Pascal's Triangle: The 3rd Diagonal

Triangular Numbers!

Triangular Numbers

<u>Idea:</u> Form equilateral triangles using equally spaced dots stacked on top of each other.

 T_n = the number of dots in such a triangle with side length of n.

Pascal's Triangle: The 3rd Diagonal

Triangular Numbers!

Pascal's Triangle: The 4th Diagonal

Tetrahedral Numbers!

Tetrahedral Numbers

<u>Idea:</u> Form regular tetrahedrons using equally spaced balls stacked on top of each other.

 H_n = the number of balls in such a tetrahedron with side length of n.

- 1: 1 ball $\implies H_1 = 1$
- 2: 3 balls in the base 1 ball on top $\implies H_2 = 4$
- 3: 6 balls in the base 3 balls in the middle layer 1 ball on top $\implies H_3 = 10$
- 4: 10 balls in the base 6 balls in the 2nd layer 3 in the 3rd layer 1 ball on top $\implies T_4 = 20$

Pascal's Triangle: The 4th Diagonal

Tetrahedral Numbers!

Pascal's Triangle: Shallow Diagonals

Source: http://en.wikipedia.org/wiki/File:PascalTriangleFibanacci.svg Author: RDBury

Fibonacci Numbers!

Counting Compositions

Let *n* be a positive integer.

A *composition* of *n*: An <u>ordered</u> sum of positive integers that add up to *n*.

Example: There are eight compositions of 4:

1 + 1 + 1 + 1 = 4 1 + 1 + 2 = 4 1 + 2 + 1 = 4 2 + 2 = 4 1 + 3 = 4 3 + 1 = 4 2 + 1 + 1 = 44 = 4

The Eight Compositions of 4:

- # of Compositions w/ Four Terms: 1
 - 1+1+1+1=4
- # of Compositions w/ Three Terms: 3
 - 1+1+2=4
 - 1+2+1=4
 - 2+1+1=4
- # of Compositions w/ Two Terms: 3
 - 2+2=4
 - 1+3=4
 - 3+1=4
- # of Compositions w/ One Term: 1
 - 4=4

The Eight Compositions of 4:

- # of Compositions w/ Four Terms: 1 = (³₃)
 1+1+1+1=4
- # of Compositions w/ Three Terms: $3 = \binom{3}{2}$
 - 1+1+2=4
 - 1+2+1=4
 - 2+1+1=4
- # of Compositions w/ Two Terms: $3 = \binom{3}{1}$
 - 2+2=4
 - 1+3=4
 - 3+1=4
- # of Compositions w/ One Term: 1 = (³₀)
 4=4

of compositions of *n* with *k* terms = $\binom{n-1}{k-1}$

Start with the stars:

Place *n* stars in a row: $* * * * * \cdots * * *$

Then add the bars:

Place k - 1 bars in the n - 1 spaces between the *n* stars (w/ at most 1 bar in each space):

* | * * * | * ··· | * | * *

Counting the # of stars between the bars:

each placement of bars \longleftrightarrow a composition of *n* *| * * * | * ... | * | * * \longleftrightarrow 1 + 3 + ... + 1 + 2 = *n*

Key Observation

There's a (bijective) correspondence between the sets:

Example:

	* * * *	\longleftrightarrow	1 + 1 + 2 = 4	
Placements of 2 bars in the 3 spaces between the 4 stars	* * * *	\longleftrightarrow	1 + 2 + 1 = 4	Compositions of 4 w/ 3 terms
	* * * *	\longleftrightarrow	2 + 1 + 1 = 4	

of placements of k - 1 bars in the n - 1 spaces between the *n* stars (with at most 1 bar in each space)

= **# of** compositions of *n* with *k* terms # of placements of k - 1 bars in the n - 1 spaces between the n stars (with at most 1 bar in each space)

of ways to choose k - 1 objects from a set of n - 1 objects

=

=

$$\binom{n-1}{k-1}$$

- # of compositions of *n* with *k* terms
- # of placements of k 1 bars in the n 1 spaces between the n stars (with at most 1 bar in each space)

of placements of k - 1 bars in the n - 1 spaces between the n stars (with at most 1 bar in each space)

=

$$= \binom{n-1}{k-1}$$

of compositions
of *n* with *k* terms =
$$\binom{n-1}{k-1}$$