
 

 

Experimental Design Considerations - OBE – Colorado College. 

 

Experimental design involves judgement and trade-off’s - no one can provide ironclad rules for 

every situation.  However, keeping these considerations in mind will strengthen your study 

tremendously. 

 

Several definitions necessary to understand the material below: 

 

1) Population--the set of things about which you want to make a generalization, e.g., all 

healthy flat-topped acacia individuals > 4 m tall growing on middle slopes in the northern 

portion of Tarangire National Park;  

2) Unit--one member of the population.  In biology, the unit is often one genetic individual, 

but could be a herd or nest, depending on your study, 

3) Sample--the subset of the population that you measure or interview. 

 

In comparative studies, minimize the effect of confounding factors 

You often want to isolate the effects of one variable (the independent variable) on an outcome 

(the dependent variable).  In comparing groups, a confounding factor is an undesired, additional 

independent variable that differs systematically among the groups you want to compare. 

 

Example: Let’s say that you would like to compare growth rates of an herbaceous plant 

species at high and low elevations.  At low elevations, you plant the seedlings from a 

greenhouse at valley bottom sites which happen to have easy access from roads. The high-

elevation roads provide easy access to dry ridgetops, and you plant the seedlings there.  

Since most plants grow faster in moister areas, your study design confounds elevation and 

moisture, i.e., if there are differences between drier high elevation sites and moister low 

elevation sites, you cannot know if elevation or moisture or some combination of the two 

cause the differences.  In order to understand the effects of elevation, you must keep 

moisture and other factors that might affect growth rate constant. 

 

Sometimes people confuse confounding factors with factors that produce random variation 

within groups.  Within each elevation in the first example, genetic differences among seedlings 

and microsite differences would cause variation among growth rates in the plants.  However, 

genetic and microsite differences are not confounding because they do not consistently cause 

higher or lower growth rates at one of the two elevations; they simply create random variation of 

growth rates within each site. 

To minimize effects of confounding factors, write down all the factors (independent 

variables) that might affect your outcome (dependent variable).  Design your study to keep all 

factors except the one independent variable you want to study as constant as possible.   

 



 

 

Ensure adequate sample size 

How many animals, plants, rates, etc., should you measure so that other researchers or policy 

makers will have confidence in your results?  You don’t want your results to lack statistical 

significance when you are pretty certain that a larger sample size would have shown a difference, 

but you also don’t want to waste time measuring many more than you need in order to show 

differences among treatments.  In order to determine how many units to measure, always 

consider the variation in the phenomenon that you are measuring.  More variation usually 

indicates that you will need to take more measurements to observe a significant effect.  

Generally, the greater the replication we have in an experiment, the better is our estimate of the 

random variation effects within sample plots in a particular treatment. 

Although replication generally increases the precision of an estimate, in deciding on your 

sample size, first consider your time and logistical constraints.  Within these limitations, you 

might look at published literature for sample sizes used in similar studies.  If these studies found 

significant differences and if you feel that your system has similar variability, you might want to 

propose using similar sample sizes.  You can quantitatively estimate necessary sample size if you 

have 1) quantitative measures (s, s2, or MSE from an ANOVA table [MSE measures s2 ]) from the 

published literature regarding the variability of your response variable or 2) measures of s2 from 

your own preliminary data. 

You should generally try to avoid pseudoreplication, in which your experiment might 

lack replication at certain levels (like a treatment level, for example).  If you want to compare 

some parameter, say brood size of a bird species within burned and unburned patches of forest, 

pseudoreplication can occur if you have only one study site in burned and one study site in 

unburned forests.  If your results indicate that brood size is impacted by burn site, 

pseudoreplication may be an issue because you have data from only one patch in each type 

(burned vs. unburned).  It can be hard to know if that single patch is representative of the rest of 

that burn type.  Pseudoreplication will not impact your ability to draw conclusions about the 

differences between those two specific sites but you can be limited in your ability to describe 

general effects of burning across the habitat you are studying.  Sometimes replication is not 

possible, due to factors such as the limited size, number, or quality of sites (e.g., burn areas) 

available for study, or due to logistical limitations. If this is the case, you should acknowledge 

such constraints in your study design, and in your conclusions exercise caution in the degree to 

which you assign causation to treatment effects, and frame interpretations of your data as new 

hypotheses to test.   

To alleviate issues with pseudoreplication, ideally you should seek to increase the 

number of study sites or sampled plots within each patch of forest type (i.e. multiple sampling 

sites in burned vs. unburned areas); you can also replicate your experiment in time by repeating 

your measurements in each of your forest types for multiple seasons or years.  It would also be a 

good idea to go back to the definitions at the beginning of this document and write down the 

statistical population to which you would like to extrapolate your findings.  If it is possible to 

sample multiple units of that population, you will be able to draw stronger conclusions about the 



 

 

particular population you sampled.  Time and resources always constrain the number of sites you 

can study; simultaneously, we often want to suggest that our findings apply beyond our study 

area.  Most researchers solve this conundrum by drawing conclusions about their study area and 

then suggesting, with a rationale, the other areas to which their findings might apply – replicating 

your experiment in time helps to makes these arguments even stronger. 

 

Consider independence of observations 

Statistical tests (with some exceptions in advanced techniques) assume independence of 

observations, i.e., that no measures are more related to some other data points than to the 

remaining observations.  For example, if you record behavioral observations of more than one 

animal in a herd, measurements of the animals within that herd are not independent.  They are 

more likely to be similar to other measurements within that group than to measurements outside 

of the group [note: this is assuming that animals within a herd experience similar conditions].   

Thinking about this in another way, consider the measurements in each group of an 

ANOVA; if you can cluster any of these data points because they are more likely to be similar, 

you do not meet the independence assumption.  If observations within a group are not 

independent, the increased similarity of their measurements will unfairly increase the probability 

of showing a statistical difference.  (For those who know some statistics: In an ANOVA, lack of 

independence tends to decrease MSE, which leads to a larger F value and lower P value.)  To 

avoid this problem, you might measure one leaf from a plant rather than several or analyze the 

data with a nested ANOVA, which accounts for the relatedness.  Sometimes you can average 

responses in a group, e.g., in a recent ACM project, a student had quantitative observations of 

either one or two animals per herd.  Considering each animal an independent observation would 

have been inappropriate; she solved the problem by averaging results with two observations per 

herd. 

Lack of independence can also occur with correlation and regression.  If you can group 

some points in a scatterplot with other points, you violate the independence assumption.  For 

example, you violate this assumption if you want to determine whether needle length of a pine 

species changes with precipitation across many sites in a region and you measure several needles 

from each tree.  Inappropriately using regression to analyze these data will likely yield more 

significance than it should.  Relatedness can also occur through time; e.g., in looking for a trend 

over time in population size, the size at any time is likely closer to the previous size than to a 

random population size.  Special regression techniques can handle this situation, but standard 

regression will yield spurious results that are more likely to show significance. 

 

Think about the spatial and temporal variation of the responses you gather 

Every response in a research project varies, either modestly or enormously.  Growth rate of one 

plant species certainly changes along a hillslope due to changes in water availability and soil 

texture.  Grazing animals might spend more time vigilant (heads up and looking around) when 

they are near thick brush that can hide predators.  Sometimes you explicitly want to study these 



 

 

spatial and temporal differences.  In other situations, these variations will make finding patterns 

in your information very difficult.  In either case, if you consider these variations, you will 

design a better study.   

One approach to thinking about spatial and temporal variation is to visualize a map that 

shows variation in what you will measure.  This map might have different intensities of a color 

with dark colors representing high values of a parameter and light colors representing low 

values.  Identify the patterns in this mental map and ask yourself what factors might be 

responsible for the patterns.  If looking at growth rate of a wide-ranging plant, the colors may be 

darkest near streams and lightest on dry ridgetops with some less obvious, finer-grained patterns 

in areas shaded or unshaded by trees.   

To add temporal change, imagine the map changing through time.  For example, plants in 

unshaded areas senescing earlier in the season than shaded plants, or, at a shorter time scale, 

plants in the sun getting water stressed earlier in the day than shaded plants. 

 

Randomly select units to measure  

If you will use statistics to fully analyze your data or just report means, standard errors, or 

confidence limits, you must sample randomly.  If you do not, your statistical results and 

conclusions cannot be trusted.  When attempting to sample randomly, you should use a 

mechanical means to generate random numbers (like a random number generator function in a 

calculator). 

In a random sample, each unit in the population has an equal probability of being chosen.  

The best (but often unreasonable) way to do this involves numbering each unit in the population 

and using a random number table, random number generator on a calculator, or hundredths digit 

on a digital stopwatch to choose which units you measure.  Use this approach when reasonable, 

but usually you will use a more time-efficient approach.  For example, you might tell the driver 

to stop the vehicle when the tenths digit on the odometer is a certain digit.  After stopping, you 

might walk a set number of paces forward and sample the nearest individual of a tree species on 

the right side of the road.  This might work well, but if you are constantly thinking critically, you 

may realize that if the trees vary in density, trees more distant from others are more likely to be 

chosen.  Think about the definition of random sampling (each unit having an equal probability of 

being chosen) in evaluating your proposed methods and consider how your proposed technique 

might bias your results. 

Before considering the bias in your technique, you should also carefully define your 

population.  You would not want to compare growth rates of seedlings to mature trees, and you 

might be interested in how many mature trees respond to elephant browsing.  Based on previous 

research and your good judgement, you decide that trees greater than a certain size and with a 

crown at least 80% alive best represent the healthy, mature trees you want to study.  While 

considering other factors that might affect growth, you realize that damage to roots from the 

road, road dust, browsing damage on the trunks, position on the hillslope, etc., can affect growth.  

You might decide that your population of interest includes trees of the appropriate size a certain 



 

 

distance from the road and on mid-slope (not in a swale and not near a hilltop).  Generally, you 

want to choose these characteristics so that your data will apply to most individuals of the 

species but use your judgement.  If you are comparing three groups, e.g., three habitats, choose 

random samples from within each group.   

You might also judge that you want to sample several trees/rocks/etc. at a randomly 

chosen point.  If you do this, your sample size is the number of points, not the number of trees 

(see section on sampling independently).  Each situation is different, but if getting to the next 

sample does not take too much time, your study may well have more statistical power (be more 

likely to show significant differences) with one tree per sampling point.  The best approach will 

vary according to your situation. 

 

Avoid bias 

Humans are extremely suggestible, and scientists go through many transformations to bend their 

results to fit their preconceived ideas while still convincing themselves they behaved objectively.  

(Stephen J. Gould’s The Mismeasure of Man provides disturbing descriptions of this 

phenomenon.)  Due to this well-documented tendency, medical studies use double-blind designs 

where neither the patient nor provider knows if the patient is receiving the test drug or placebo.  

In lab biology, especially when rating on a subjective scale as in rating disease in microscopic 

analysis of tissue, specimens are given to the evaluator with only a number and not the name of 

the treatment.  In the field, similar blinding often poses more challenges since you know, e.g., 

whether you are in a burned or unburned forest.  In these situations, explicitly state your 

expectations/desires/hypotheses and constantly ask yourself if you are biasing your results.  If 

you use subjective scales, write them out and have pictures of each level. 

  

Plan ahead for statistical analysis 

Beginning researchers often make the mistake of collecting data and only afterwards thinking 

how they will analyze their data.  All too often, this leads to some or all their data being useless.  

Don’t waste your valuable research time and effort; always think through your statistical 

analyses before you collect data.  You may consult previous studies in your field for how to 

analyze data but think critically as standards have changed substantially through time and even 

otherwise strong papers have used incorrect statistical methods.  

As part of planning ahead for analysis, consider the types of variables you will gather so that 

their level of measurement will fit the analyses.  In organismal biology and ecology, you will 

often collect continuous data or counts but may also use other levels of measurement.  To help 

think about statistical analyses appropriate for your data, decide which category below fits each 

of your variables; then review your statistics notes, see a statistical text, or consult an 

experienced data analyst for assistance. 

 

1) Nominal data.  Levels have names but no order, e.g., species name, sex.  You often end 

up with counts or continuous measurements for various levels of a nominal variable.  See 



 

 

those data types for analysis. 

 

2) Ordinal data.  The levels of a variable have an order, but the levels are not necessarily the 

same distance from each other, e.g., small / medium / large, very strong / strong / 

moderate / light / very light disease impacts.  When possible, e.g., small/medium/large, 

you will often obtain better results with continuous variables, but sometimes the time 

efficiency of ordinal variable outweighs this consideration.  When analyzing ordinal data, 

you will often use the Kruskal-Wallis test to compare groups and Spearman’s rank 

correlation to look for relationships between two variables. 

 

3) Continuous data.  This very common type of variable can take an infinite number of 

values between any two values, e.g., density, phosphorus content, length of twig, speed, 

and percent (however, if percent was calculated from counts, you often should use the 

techniques under count data).   

 

 

a. To determine if two variables are related, use regression (if cause and effect are 

obvious and the independent variable is measured with minimal error) or 

correlation (for other situations). 

b. If you want to compare means of groups, use a t-test (paired or random groups, 

depending on your data collection design) for two groups and one-way ANOVA 

(analysis of variance) for two or more groups.   

c. Several other types of ANOVA exist for more complex data collection designs, 

Including nested ANOVA (e.g., several twigs measured for each tree, several 

trees per site, and several sites per habitat) and two-way ANOVA (e.g., mass of 

an animal according to two factors, such as sex and habitat), and repeated 

measures ANOVA (if you have measured the same unit at two or more points in 

time). 

 

4) Count data.  Counts within nominal categories usually lead to chi square analysis, e.g., 

number of times impala occur with baboons vs. without baboons.  If you have an expected 

ratio of counts, use a chi square goodness of fit test; if you do not have an expected ratio 

and are looking to see if variables are associated, use a chi square test of independence. 


